
swiftenv Documentation
Release 1.4.0

Kyle Fuller

Jul 18, 2018

Contents

1 The User Guide 3
1.1 Installation . 3
1.2 Getting Started . 4
1.3 Building Swift from Source . 6
1.4 Command Reference . 7
1.5 Changelog . 9
1.6 Integrations . 13

i

ii

swiftenv Documentation, Release 1.4.0

swiftenv allows you to easily install, and switch between multiple versions of Swift.

swiftenv allows you to:

• Change the global Swift version, per user.

• Set a per-project Swift version.

• Allows you to override the Swift version with an environmental variable.

Contents 1

swiftenv Documentation, Release 1.4.0

2 Contents

CHAPTER 1

The User Guide

1.1 Installation

NOTE: If you’re on macOS, consider installing with Homebrew.

1.1.1 Via a Git clone

1. Check out swiftenv, we recommend ~/.swiftenv (but it can be installed elsewhere as long as you set
SWIFTENV_ROOT).

$ git clone https://github.com/kylef/swiftenv.git ~/.swiftenv

2. Configure environment.

For Bash:

$ echo 'export SWIFTENV_ROOT="$HOME/.swiftenv"' >> ~/.bash_profile
$ echo 'export PATH="$SWIFTENV_ROOT/bin:$PATH"' >> ~/.bash_profile
$ echo 'eval "$(swiftenv init -)"' >> ~/.bash_profile

NOTE: On some platforms, you may need to modify ~/.bashrc instead of ~/.bash_profile.

For ZSH:

$ echo 'export SWIFTENV_ROOT="$HOME/.swiftenv"' >> ~/.zshenv
$ echo 'export PATH="$SWIFTENV_ROOT/bin:$PATH"' >> ~/.zshenv
$ echo 'eval "$(swiftenv init -)"' >> ~/.zshenv

For Fish:

$ echo 'set -gx SWIFTENV_ROOT "$HOME/.swiftenv"' >> ~/.config/fish/config.fish
$ echo 'set -gx PATH "$SWIFTENV_ROOT/bin" $PATH' >> ~/.config/fish/config.fish
$ echo 'if which swiftenv > /dev/null; status --is-interactive; and source
→˓(swiftenv init -|psub); end' >> ~/.config/fish/config.fish

3

swiftenv Documentation, Release 1.4.0

For other shells, please open an issue and we will visit adding support.

3. Restart your shell so the changes take effect.

1.1.2 Via Homebrew

You can install swiftenv using the Homebrew package manager on macOS.

1. Install swiftenv

$ brew install kylef/formulae/swiftenv

2. Then configure the shims and completions by adding the following to your profile.

For Bash:

$ echo 'if which swiftenv > /dev/null; then eval "$(swiftenv init -)"; fi' >> ~/.
→˓bash_profile

NOTE: On some platforms, you may need to modify ~/.bashrc instead of ~/.bash_profile.

For ZSH:

$ echo 'if which swiftenv > /dev/null; then eval "$(swiftenv init -)"; fi' >> ~/.
→˓zshrc

For Fish:

$ echo 'if which swiftenv > /dev/null; status --is-interactive; and source
→˓(swiftenv init -|psub); end' >> ~/.config/fish/config.fish

1.1.3 Uninstalling swiftenv

1. Remove swiftenv from any .bash_profile, .bashrc, .zshrc, fish.config that you’ve added during
installation.

2. Remove SWIFTENV_ROOT aka, ~/.swiftenv.

$ rm -fr ~/.swiftenv

3. Uninstall any swiftenv packages (brew uninstall, pacman, etc).

1.2 Getting Started

Once you’ve installed swiftenv you can get started by checking which existing versions of Swift you have installed.

$ swiftenv versions
2.2.1
2.3

* 3.0 (set by /Users/kyle/.swiftenv/version)

NOTE: swiftenv will automatically pick up any versions of Swift installed on macOS by Xcode or Swift toolchains.

4 Chapter 1. The User Guide

https://github.com/kylef/swiftenv/issues/new
http://brew.sh/
installation.html

swiftenv Documentation, Release 1.4.0

1.2.1 Installing Swift

You can install swift using swiftenv install.

$ swiftenv install 3.0

Listing all versions

You can list all versions of Swift:

$ swiftenv install --list

You can also list all binary snapshots of Swift that you can install.

$ swiftenv install --list-snapshots

1.2.2 Switching Swift Versions

swiftenv allows you to switch between the installed Swift versions either globally or locally. You can configure a
global Swift version that is used by default unless overridden.

Global Version

You can check the current global Swift version using swiftenv global.

$ swiftenv global
3.0

To change the global version:

$ swiftenv global 2.2.1

Local Version

You can override the global version within any project using a .swift-version file. A Swift version file will
indicate the version to be used.

Setting the local Swift version:

$ swiftenv local 3.0

Now, when you’re inside the current directory, the Swift version will be automatically changed to the local version.

$ swiftenv version
2.2.1 (set by /Users/kyle/Projects/kylef/Curassow/.swift-version)

When you switch to another directory without a .swift-version file, the global version will be used.

$ swiftenv version
3.0 (set by /Users/kyle/.swiftenv/version)

1.2. Getting Started 5

swiftenv Documentation, Release 1.4.0

1.3 Building Swift from Source

swiftenv install can install Swift from source.

Listing available versions.

$ swiftenv install --list
2.2
2.2-dev
3.0-dev

NOTE: Swift 2.2 does not include the Swift Package Manager.

$ swiftenv install 2.2

By default, Swift will download from an Apple binary release available from swift.org. However you can use
--build to force building the version.

$ swiftenv install 2.2 --build

1.3.1 Platforms

Below you can find a list of specific dependencies for each platform.

macOS

You will need to install the latest version of Xcode along with cmake and ninja build to build Swift on macOS.

Via Homebrew

$ brew install cmake ninja

Via Mac Ports

$ sudo port install cmake ninja

Arch Linux

You will need to install the following dependencies for Arch Linux:

$ pacman -S perl libbsd icu git libedit python2 clang cmake ninja

Ubuntu

You will need to install the following dependencies on Ubuntu:

$ sudo apt-get install git cmake ninja-build clang python uuid-dev libicu-dev icu-
→˓devtools libbsd-dev libedit-dev libxml2-dev libsqlite3-dev swig libpython-dev
→˓libncurses5-dev pkg-config (continues on next page)

6 Chapter 1. The User Guide

swiftenv Documentation, Release 1.4.0

(continued from previous page)

If you are building on Ubuntu 14.04 LTS, you’ll need to upgrade your clang compiler for C++14 support and create a
symlink:

$ sudo apt-get install clang-3.6
$ sudo update-alternatives --install /usr/bin/clang clang /usr/bin/clang-3.6 100
$ sudo update-alternatives --install /usr/bin/clang++ clang++ /usr/bin/clang++-3.6 100

FreeBSD

You will need to install the following dependencies on FreeBSD:

$ pkg install clang36-3.6.2 git python ninja cmake pkgconf e2fsprogs-lluuid

Your platform here

If you have successfully build Swift via swiftenv on other platforms, feel free to update this list with a pull request.

1.4 Command Reference

1.4.1 version

Displays the current active Swift version and why it was chosen.

$ swiftenv version
2.2 (set by /home/kyle/.swiftenv/version)

1.4.2 versions

Lists all installed Swift versions, showing an asterisk next to the currently active version.

$ swiftenv versions
2.1.1

* 2.2 (set by /home/kyle/.swiftenv/version)
DEVELOPMENT-SNAPSHOT-2016-03-01-a

1.4.3 global

Sets the global version of Swift to be used by writing to the ~/.swiftenv/version file. This version can be over-
ridden by application-specific .swift-version file, or by setting the SWIFT_VERSION environment variable.

$ swiftenv global 2.2
$ swiftenv global
2.2

1.4. Command Reference 7

https://github.com/kylef/swiftenv/blob/master/docs/building-swift.md

swiftenv Documentation, Release 1.4.0

1.4.4 local

Sets the local application-specific Swift version by writing the version to a .swift-version file in the current
directory. This version overrides the global version and can also be overridden further by the SWIFT_VERSION
environment variable.

Setting a local Swift version

$ swiftenv local 3.1.1

Setting the local swift version will write the version to the .swift-version file in the current working directory.

Checking the local Swift version

$ swiftenv local
3.1.1

1.4.5 install

Installs a version of Swift. This supports both binary releases provided by Apple, along with all open source Swift
releases.

You may use --build or --no-build to force a building from source, or installing from a binary release. Other-
wise swiftenv will prefer installing from a binary release if available.

Please see Building Swift from source for more information.

$ swiftenv install 2.2

You may also install from a user supplied URLs to a Swift Binary package URL from Swift Snapshots as a parameter

Installing Swift from a URL

You may pass a URL of a binary Swift release directly to swiftenv install.

$ swiftenv install https://swift.org/builds/development/xcode/swift-DEVELOPMENT-
→˓SNAPSHOT-2016-03-01-a/swift-DEVELOPMENT-SNAPSHOT-2016-03-01-a-osx.pkg
Downloading https://swift.org/builds/development/xcode/swift-DEVELOPMENT-SNAPSHOT-
→˓2016-03-01-a/swift-DEVELOPMENT-SNAPSHOT-2016-03-01-a-osx.pkg

Custom Installation

You may also manually install Swift and make it accessible to swiftenv. Custom Swift installations can either be placed
in a directory using the correct version number at ~/.swiftenv/versions/VERSION, or can be symbolic linked
into the version directory.

It is expected that all dependencies are already installed for running Swift, please consult the Swift website for more
information.

NOTE: After manually installing a version of Swift, it’s recommended that you run swiftenv rehash to update
the shims.

8 Chapter 1. The User Guide

/building-swift.html
https://swift.org/download/#latest-development-snapshots
https://swift.org/download/

swiftenv Documentation, Release 1.4.0

Verifying Linux Binary Packages

When downloading a pre-built binary package, swiftenv can also download the corresponding signature and verify it
with gpg. This option assumes gpg is installed on the system, and the Swift public keys already exist on the public
gpg keyring. If verification fails, the version will not be installed. Signatures are currently only checked in this way
for Linux builds.

$ swiftenv install 2.2 --verify

1.4.6 uninstall

Uninstalls a specific Swift version.

$ swiftenv uninstall 2.2

1.4.7 rehash

Installs shims for the Swift binaries. This command should be ran after you manually install new versions of Swift.

$ swiftenv rehash

1.4.8 which

Displays the full path to the executable that would be invoked for the selected version for the given command.

$ swiftenv which swift
/home/kyle/.swiftenv/versions/2.2/usr/bin/swift

$ swiftenv which lldb
/home/kyle/.swiftenv/versions/2.2/usr/bin/lldb

1.5 Changelog

1.5.1 1.3.0

Enhancements

• You can now instruct swiftenv install to both locally and globally set the installed swift version.
--set-local and --set-global respectively will set the current Swift version.

The default behaviour will set the global version by default when swiftenv install was provided an
explicit version. When installing with the SWIFT_VERSION environment value or the .swift-version
file present, then the default behaviour is to not set the global or local version.

• When installing Swift from binary, swiftenv will now detect Ubuntu-based Linux distributions such as Elemen-
tary OS and use the appropriate binary image from swift.org.

1.5. Changelog 9

https://swift.org/download/#active-signing-keys

swiftenv Documentation, Release 1.4.0

Bug Fixes

• On macOS, swiftenv uninstall would fail to uninstall some installed binary toolchains due to
-RELEASE being after the version in some paths that was unexpected.

• When using swiftenv uninstall, the command would fail if there was no global set version of swift. The
command can now handle missing global version.

1.5.2 1.3.0

Enhancements

• New --verify option to swiftenv install to verify binary snapshots using GPG. This option expects that GPG
is setup and configured to accept the Swift master keys. Verify can be forced with the environment variable
SWIFTENV_VERIFY.

• Added local cache for Swift binaries for 3.0.2, 3.1, 3.1.1.

• swiftenv install will now resume any failed downloads instead of restarting the download process when
restarting an install.

• swiftenv install --verbose will now include verbose build output while compiling swift.

• Adds build instructions for Swift 3.0, 3.0.1, 3.0.2, 3.1, 3.1.1, 3.0-dev, 3.1-dev and 4.0-dev.

• When building Swift from source, swiftenv will download tarballs instead of git cloning the repository resulting
in faster download speed.

• Adds support for Fish 2.6.

1.5.3 1.2.1

Enhancements

• Adds usage and summaries when using swiftenv --help with a subcommand.

• Adds a manpage for swiftenv and swiftenv-install.

$ man swiftenv
$ man swiftenv-install

Bug Fixes

• Fixes detecting Swift release toolchains on macOS.

• Fixes an issue where swiftenv install wouldn’t emit an error if it couldn’t find instructions to install the
given version.

1.5.4 1.2.0

Enhancements

• Only create shims for swift* and lldb* binaries found within Xcode installs. Before we created shims for
all executable tools found in Xcode and created shims for tools like ctags, cc, clang, etc.

10 Chapter 1. The User Guide

swiftenv Documentation, Release 1.4.0

• Adds support for installing binary GM releases.

Bug Fixes

• Expose not found errors when using swiftenv exec against unknown commands.

• Swift preview versions such as 3.0-preview-1 will be detected as binary versions when using swiftenv
install.

1.5.5 1.1.0

Enhancements

• Add a --skip-existing/-s flag to swiftenv install to skip installation if version is already in-
stalled.

• Adds support for Swift toolchains installed into ~/Library/Developer/Toolchains/ on OS X.

1.5.6 1.0.2

Bug Fixes

• Adds support for installing preview snapshots such as 3.0-preview-1-SNAPSHOT-2016-05-31-a.

• swiftenv init will now cause a rehash if the version of swiftenv has changed.

1.5.7 1.0.1

Enhancements

• Added swiftenv install --list-snapshots which shows you a list of snapshots for your platform.

Bug Fixes

• Adds support for building Swift 2.2.1 from source, and installing 2.2.1 development snapshots.

• swiftenv uninstall will now uninstall Swift toolchains on OS X.

• swiftenv uninstall will now inform you if you’re trying to uninstall a version of Swift bundled with
Xcode.

1.5.8 1.0.0

Enhancements

• Supports installing final Swift releases such as 2.2.

1.5. Changelog 11

swiftenv Documentation, Release 1.4.0

Bug Fixes

• Swift toolchains ‘latest’ version is no longer shown in swiftenv versions on OS X.

• Fixes a problem where swiftenv install on Linux will incorrectly determine URL for the Swift binaries.

• Adds a --verbose mode to swiftenv versions to show where the version was installed.

1.5.9 0.5.0

Enhancements

• The swift- prefix for versions is now optional.

• swiftenv install now has a --list option:

$ swiftenv install --list

• swiftenv install is capable of building Swift 2.2-dev from source.

• swiftenv install now takes URLs to a Swift binary package.

• swiftenv install was updated to use the new binary swift.org release URLs.

Bug Fixes

• Fixes an issue where using shims would suppress error messages when the configured version was not installed.

• Allows the completion to work when using swiftenv installed from Homebrew.

1.5.10 0.4.0

Enhancements

• Adds support for command and argument completions.

1.5.11 0.3.2

Bug Fixes

• Performance improvement when running on OS X. In previous versions, during initialisation swiftenv with
rehash the environment, unfortunately once we added support for Xcode’s Swift there was a huge negative
performance impact due to Xcode tools taking large amount of time due to the underlying commands being
tremendously slow.

1.5.12 0.3.1

Bug Fixes

• Improved error reporting when trying to install a non-existent Swift version.

• When a shim command isn’t found in version, search PATH too. This fixes a problem when using swiftenv on
OS X with Xcode installed while your Swift version is configured to a snapshot from swift.org.

12 Chapter 1. The User Guide

swiftenv Documentation, Release 1.4.0

1.5.13 0.3.0

Enhancements

• swiftenv install can now install Swift on OS X.

1.5.14 0.2.1

Bug Fixes

• Fixes an issue when installing via Homebrew and the $SWIFTENV_ROOT directory didn’t exist.

1.5.15 0.2.0

Enhancements

• Adds support for versions of Swift included in Xcode.

• Added swiftenv --help.

1.5.16 0.1.0

Initial release.

1.6 Integrations

1.6.1 Heroku

The Swift buildpack for Heroku automatically makes use of swiftenv and will automatically install the local version
of Swift you’ve specified in your .swift-version file.

Usage

Example usage:

$ ls
Procfile Package.swift Sources .swift-version

$ heroku create --buildpack https://github.com/kylef/heroku-buildpack-swift.git

$ git push heroku master
remote: -----> Swift app detected
remote: -----> Installing Swift DEVELOPMENT-SNAPSHOT-2016-02-08-a
remote: -----> Installing clang-3.7.0
remote: -----> Building Package
remote: -----> Copying binaries to 'bin'

You can also add it to upcoming builds of an existing application:

1.6. Integrations 13

https://github.com/kylef/heroku-buildpack-swift

swiftenv Documentation, Release 1.4.0

$ heroku buildpacks:set https://github.com/kylef/heroku-buildpack-swift.git

The buildpack will detect your app as Swift if it has a Package.swift file in the root.

Procfile

Using the Procfile, you can set the process to run for your web server. Any binaries built from your Swift source using
swift package manager will be placed in your $PATH.

web: HelloWorld --workers 3 --bind 0.0.0.0:$PORT

1.6.2 Travis CI

You can use swiftenv to both install Swift, and to manage multiple versions of Swift on Travis CI.

Using the following install phase, you can install both swiftenv and the Swift version found in the .
swift-version file or the SWIFT_VERSION environment variable.

install:
- eval "$(curl -sL https://swiftenv.fuller.li/install.sh)"

Operating Systems

macOS

For macOS support on Travis, you will want to enable the xcode7.2 or newer image which contains a version of
macOS and Xcode required for Swift.

osx_image: xcode7.2

Linux

The default Linux image on Travis CI doesn’t have a version of Clang that is required to use Swift. You can switch to
the new Travis trusty build environment which contains Clang 3.5 using the following:

language: generic
sudo: required
dist: trusty

Multi-OS

swiftenv can be used on both macOS and Linux, you can use Travis multiple operating system support by adding both
platforms to the os key:

os:
- linux
- osx

14 Chapter 1. The User Guide

https://travis-ci.com/
https://swiftenv.fuller.li/install.sh
https://docs.travis-ci.com/user/trusty-ci-environment/
https://docs.travis-ci.com/user/multi-os/

swiftenv Documentation, Release 1.4.0

You can mix this together with the above steps required for macOS and Linux to have a complete .travis.yml file
as follows:

os:
- linux
- osx

language: generic
sudo: required
dist: trusty
osx_image: xcode7.2
install:

- eval "$(curl -sL https://swiftenv.fuller.li/install.sh)"
script:

- swift build

Testing against multiple Swift versions

You can use build matrix on Travis CI to set the SWIFT_VERSION environment variable to different values. Travis
will now run against multiple versions of Swift.

env:
- SWIFT_VERSION=2.2-SNAPSHOT-2016-01-06-a
- SWIFT_VERSION=DEVELOPMENT-SNAPSHOT-2016-02-08-a

1.6.3 GitLab CI

Using the swiftenv docker image, you can install a version of Swift and test against it using GitLabs docker based
CI runners.

This is what the .gitlab-ci.yml file looks like which can install swiftenv and Swift 3:

image: kylef/swiftenv

before_script:
- swiftenv install 3.0

test:
script:
- swift test

1.6.4 CircleCI

You can use swiftenv in conjunction with Docker on CircleCI to easily test your Swift project on CircleCI.

NOTE: These instructions only cover using CircleCI on Linux and do not apply to CircleCI macOS containers.

Dockerfile

A Dockerfile may contain the instructions to build a docker container containing swiftenv, Swift and your source
code.

The following Dockerfile shows an example of setting up swiftenv and installing the version of Swift found in
.swift-version.

1.6. Integrations 15

https://circleci.com

swiftenv Documentation, Release 1.4.0

You may also base your image on top of kylef/swiftenv:swift3 or kylef/swiftenv:swift to use pre-
installed Swift versions.

FROM kylef/swiftenv

RUN mkdir -p /code
WORKDIR /code
ADD . /code

RUN swiftenv install

circle.yml

Using a circle.yml file we can instruct CircleCI to build and run swift test inside our docker container.

machine:
services: docker

dependencies:
override: docker build -t myapp .

test:
override: docker run myapp swift test

1.6.5 Docker

We provide a swiftenv image for Docker. You can pull it down to use Swiftenv and Swift in Docker or base your own
images from the swiftenv image.

Swiftenv provides multiple base docker images:

• latest - Image with swiftenv and all runtime dependencies to use Swift binaries.

• build - Image with swiftenv and all build dependencies to be able to build Swift from source.

• swift3 - Image with swiftenv and the latest stable version of Swift 3.

• swift - Image with swiftenv and the latest stable version of Swift.

All of the docker images are based on top of Ubuntu 16.04 LTS (Xenial).

Running the swiftenv image directly

You can pull down the kylef/swiftenv docker image and run it.

$ docker pull kylef/swiftenv
$ docker run -i -t --entrypoint /bin/sh kylef/swiftenv
swiftenv --version
swiftenv 1.4.0

Or for swiftenv with latest Swift:

$ docker pull kylef/swiftenv:swift
$ docker run -i -t --entrypoint /bin/sh kylef/swiftenv
swift --version
swift 3.0.1

16 Chapter 1. The User Guide

https://hub.docker.com/r/kylef/swiftenv/

swiftenv Documentation, Release 1.4.0

Building a docker image using swiftenv

You may base your own Docker image from the swiftenv image, you may then install any Swift version you desire in
your container.

FROM kylef/swiftenv
RUN swiftenv install 3.0

docker-compose

Docker compose allows you to setup and run your project easier. It’s a wrapper around docker.

For example, we can create a service called commander on top of the swift3 swiftenv image which maps the source
files into the docker container.

version: '2.0'

services:
commander:
image: kylef/swiftenv:swift3
volumes:

- './Sources:/code/Sources'
- './Tests:/code/Tests'
- './Packages:/code/Packages'
- './Package.swift:/code/Package.swift'

working_dir: /code
command: swift build

We can then use docker-compose to run commands such as swift test inside our container.

$ docker-compose run commander swift test

You can switch out the image line of your service for build: . to build a Dockerfile found in your repository
instead of going straight from the swift3 image. This allows you to pin to a specific version of Swift.

1.6. Integrations 17

	The User Guide
	Installation
	Getting Started
	Building Swift from Source
	Command Reference
	Changelog
	Integrations

